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By eliminating the electrical field originating because of separation of the charged com-
ponents, the Navier —Stokes equations for partially ionized multicomponent reacting gas
mixtures without external electromagnetic fields are reduced to equations analogous to
the equations for a chemically reacting mixture of neutral gases. Formulations of prob-
lems about flows in chemical equilibrium taking account of ionization, thermo- and baro-
diffusion reactions for arbitrary mixtures with different diffusion properties of the com-
ponents are examined within the scope of the complete Navier —Stokes equations and the
Prandtl equations of an asymptotically thin boundary layer around both impermeable and
thermochemically destructible walls.

Equations for flows of ideal mixtures in chemical equilibrium have been formulated in [1]. Within the
limits of boundary layer theory these equations have been presented in [2] for viscous, heat-conducting mix-
tures of electrically neutral components in chemical equilibrium in the presence of diffusion.

Eduilibrium flows of ionized air in the boundary layer have been examined in many papers [3-5] in a
simplified formulation for a binary diffusion model. In such a formulation the diffusion properties of all
the jons and all the neutrals are, respectively, considered identical, which affords a possibility of describ-
ing the diffusion of all components by using a single effective ambipolar coefficient of diffusion. In this
case (for nondestructible walls), the concentrations of the chemical elements in the stream will be constant,
and, therefore, the component concentrations and the transport coefficients can be calculated in advance as
functions of just the pressure and temperature.

A new logical description of the fundamental equations is presented herein for the case of equilibrium
flows of ionized mixtures with different diffusion properties of the components. The reason for the differ-
ence, in principle, between the equations obtained and those found earlier in the literature is elucidated.

The presence of components with dissimilar binary diffusion coefficients (drag coefficients) in a mov-
ing gas mixture results in the elementary chemical composition (concentration of chemical elements) being
variable in the stream. In this case, the equilibrium chemical composition (concentration of components)
will depend not only on the pressure and temperature, but also on the concentration of the chemical elements
as additional independent variables varying in the stream. The important deduction hence follows that in
solving problems on the motion of chemical equilibrium mixtures with different diffusion properties of
the components, the determination of the effective specific heat and the effective coefficient of heat conduc-
tion as functions of just the pressure and temperature turns out to be impossible, In the general case these
quantities should be calculated in parallel with the solution of a specific problem and appropriate equations
are presented for them herein, Boundary conditions on an impermeable and thermochemically destructible
wall are formulated when the diffusion and thermal diffusion properties of the components are distinct,
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1. Let us write the closed system of Navier-Stokes equations for an arbitrary N-component chemical-
ly reacting gas mixture in the presence of ionization reactions, and in the absence of external electromag-
netic fields and energy transfer by radiation under conditions of quasi-neutrality of the mixture.

1°. Continuity equation for the mixture as a whole

N

2 .
T div(ev) =0, pv= Dpsvi p= Elpk 1.1)

k=1
where p; is the mass density of the i-th component, v; is the mean statistical veloecity of the i-th component,
g is the mixture density, v is the mean mass flow rate of the mixture, and t is the time,
2°. Diffusion equation for the components
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with their closing Stefan—Maxwell relationships written in terms of the molar concentrations [6, 7]
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or their equivalent relationships written in terms of the mass concentrations [6, 7]
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Here ci, xj, mj, ej, nj, Ji, wi are, respectively, the mass concentration, the molar concentration, the
molecular weight, the charge, the number of moles per unit volume, the mass diffusion flux vector, and the
velocity of mass origination because of the chemical reactions per unit volume of the i-th component per
unit time; p, T, m, and n are, respectively, the pressure, temperature, mean molecular weight, and number
of moles per unit volume; DiT is the coefficient of thermal diffusion of the i~th component; g ij are the drag
coefficients which turn out fo equal the reciprocals of the binary diffusion coefficients [7, 8] under the as-
sumption that the multicomponent coefficients of diffusion can be replaced by a first approximation in
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Chapman— Enskog theory,t i.e., by D‘1 1), Ky and K&?) are the generalized thermal diffusion ratios, re-
spectively, for the molar and mass descrlptmn of diffusion, Kp and Kéf?) are the generalized barodlffusmn
ratios, respectively, for the molar and mass description of diffusion,

For the case of a binary mixture of neutral gases we obtain

Aij=A, Di?z-—DjT, 3i=85=0, ET-—- ——

m? DT mym;
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— _ R g = M (c_) _ mamy
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where K and Kp are, respectively, the ordinarily defined coefficients of thermo~ and barodiffusion [8].

The relationships (1.3) and (1.5) have been obtained from their initial expressions [8] by elimination
of the electric field originating because of separation of the charged components, by using the quasi-
neutrality condition [6, 7].

It should be noted that (1.3), (1.5) are valid only when neglecting viscous momentum transport in the
gas [9]. However, it can be shown that for Reynolds numbers much greater than unity the influence of vis-
cous momentum transport on the diffusion streams can be neglected.

3°, Momentum equation for the mixture as a whole
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Here 733 are the components of the viscous stress tensor, ejj are components of the strain rate
tensor, i is the dynamic coefficient of mixture viscosity, and £ is the second coefficient of viscosity. The
relation between the components of the tensors 7 and e is presented under the assumption that the pres-
ence of chemical reactions in the stream does not affect the stress tensor.

4°, Equation of heat influx for the mixture as a whole
N N
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where hj is the specific enthalpy of the i~th component, h is the specific enthalpy of the mixture, J q is the
total heat flux, q is the reduced heat flux, ¢ is a dissipative function, Rp is the absolute gas constant, y is
the ordinary coefficient of mixture heat conductivity, and the coefficient X' is calculated in the kinetic
theory of gases in terms of coefficients of expansions in Sonin polynomials [8].

In writing (1.8) it is assumed that the medium is a mixture of perfect gases. If (1.7), multiplied first
by v is then added to (1.8), we obtain the energy equation for the mixture as a whole

pq(r+Y) =2 —div@ (1.10)
TSee the remarks at the end of this paper for more details,
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5°. The equation of state for the mixture considered as a mixture of perfect gases

p=pRaT/m (1.11)
closes the system for the 2N +6 desired functions
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Let us note some trivial algebraic integrals of this system. From the definitions of the concentra-
tions and diffusion flows, the relationships

N N - d
Sea=1 (Ja=1), Jh=0 (1.12)
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are always satisfied.

The condition of quasi-neutrality of the mixture and the absence of an electric current yield two in-
tegrals of the fundamental equations of motion

N. ¥ N
Zekck’ =0 ‘{c{ = &) » Zekal =0 {1.13)

k=1 K=t

Taking account of (1.12) and the condition of conservation of the total mass of the mixture in the pres-
ence of chemical reactions

w+ ... +uwy=0 (1.14)

we obtain that N — 1 equations will be independent in the system (1.2). Taking account of (1.12), we find
that, exactly as (1.5), there will be N — 1 independent relationships (1.3). Hence, one of the components can
always be eliminated in specific computations of the concentration and diffusion flow. Conditions (1.13) can
be used to eliminate another component, say the electronic one, from the considerations.

Let us transform (1.2) and (1.8) by explicitly introducing the heat of reaction in the latter. In the
flow around a streamlined body let there be N components as a result of all possible homogeneous and
heterogeneous reactions. Let the number of independent (basis) components, for which the chemical ele-
ments and the electronic component can be chosen in particular, be Neg. Then, because of the independent

reactions, all the remaining components (the reaction products) Ay (i=1, ..., Ny, Ny = N— Ng) can be ex-
pressed in terms of the basis components Aj G =Ny +1,...,N),in particular, as follows:
N
Ai= D Ay (=1, N (1.15)
=1y

Here A4, Aj are the chemical symbols of the components, and v jj are stoichiometric coefficients.

If each diffusion equation (1.2) of the components is multiplied, respectively, by the constant vijmy /my
i=1, ..., N and all the equations thus obtained are added, then, taking account of conservation of the ele-
ments in the chemical reactions

N

m; . ,
kaim_;w!c=0 ((=4+Nn..uN)
k=

we obtain the diffusion equations of the elements

K
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k=1 e g
where ¢¥,J* (=N, +1, ..., N) are, respectively, the \concentration and mass diffusion flow of the j-th

element,
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An additional system of equations relating c * and J # G =Np+l, , N) is obtained from (1.5) by
using (1.17)

N
Vep = — Ipm me + Zd,kJ,, + §} b — Kr'VIa T — K%Vl p (1.18)
=1 k=1 =N

where
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Taking account of the mass conservation condition in the reactions (1.15) we obtain from (1.17)

N N
2 gt =1, 2 IF=0 (1.19)

F=14-N, j=1+N,
Moreover, let us note that conditions (1,13) for an electron element yield two more final relationships¥t

¢t (E)=0, J*(E)=0 (1.20)

Taking account of (1.19) and (1.20), we then have that just Ng — 2 equations should remain from the
Ne = N — Ny equations (1,16), The two equations omitted are replaced by the algebraic integrals (1.19) and
(1.20).

Equations (1.16), (1.19), and (1.20) always hold independently of whether there are reactions or not,
whether they proceed at a finite or infinite (chemical equilibrium) rate. Hence, in the general case the sys-
tem (1.2) can be modified as follows: Let us just retain Ny independent equations corresponding to the
formation of products in the reactions (1.15), and let us replace the rest of the diffusion equations by N-—
Ny — 2 homogeneous equations (N — Ny — 1 in the case of a mixture of electrically neutral components) of
diffusion of the elements (1.16) and the algebraic relations (1.19), (1.20).

Let us transform the energy conservation equation by explicitly extracting the terms containing the
heat of chemical reaction. In conformity with the first law of thermodynamics, the heat of reaction Qi =
1, ..., Ny) needed to form unit mass of a product Aj in the reactions (1.15) for constant p and T is deter-
mined in terms of the enthalpy of the components by means of

By — 2 vk = QG(T)  G=1,...,N) (1.21)
?Ml-{-N
EF= cPi (i-—.::i,.. .,N) (1.22)
where cpi (i=1, ..., N) is the specific heat of the i-th component at constant pressure. Then the total

heat flux Jq can be represented, taking account of (1.9), (1.17), and (1.21), in the following physically graph-
ic form:

N
J,= —AVT — ZQk’Jk+ 2 7% P (1.23)
=1 F=N, 1
N
Q/ =Q;+ BalsTm, o7 =357 — 3 vz
F=1+N,

T When it is needed to introduce the symbol of the chemical element as a subscript, it will be enclosed in
parentheses, For example, for electrons cp* = cx(E),
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hi =h;— RaTm; 8" (i =1,.. Ny j=Np+1,...N) (1.24)

If the "effectiye" heats of reaction Qi =1, ..., Ny and the "effective" specific enthalpies of the
basis components hJ =Ny +1,...,N) are introduced, then the formula for the total heat flux will agree,
outwardly, with the expression for the total heat flux in the absence of a diffusion heat effect. In conform-
ity with (1.21), (1.22), the differential of the mixture enthalpy will be

N, N N N,
dh=c,dT — Qe+ X hdep =d( 3 ok~ 3 ey) (1.25)
k=1 J=1N, J=1-+N, k=1

The second sum in (1.25) in the first expression corresponds to the change in enthalpy in a thermo-
dynamically open system [10]., Taking account of (1.25), (1.16), and (1.23), the heat influx equation (1.8)
will be

. N, Ny N N
Pl 5 — S0k = F+aiv (AT 4 30/ + RaT 3 o - 3 Vel (1.26)
k=1 =1 j=1+N, J=1+N,

The influence of the heat of reaction on the temperature profile is easily estimated in such a form of
writing the heat influx equation, The energy equation (1.10) becomes

N

- N
p %(h + ‘;) = %l;-—{— div (Z.VT + 2QT— 2 I+ "7") 1.27)

k=1 j=1+N,

Writing the energy equation thus is inconvenient because the enthalpies of components, which are de-
termined from (1.22) for given specific heats of the components to the accuracy of arbitrary additive con-
stants, enter therein. Let us note that these constants do not enter into (1.26). To eliminate the additive
constants from (1.27), let us introduce the new desired function

N Ny .
H= 2 cihi— Do+ 5 (1.28)
i=1FN, k=1

where c%, are given concentrations of elements in the free stream. The sense of the function H is that the
difference H — H, equals the heat needed to heat unit mass of the free stream to the temperature of the
point under consideration without taking account of physicochemical transformations, plus the heat of reac-
tion of the formations of all the possible products with concentrations ¢; 1 =1, . .., Ny) for the pressure,
temperature, and elementary chemical composition at this point, plus the difference in kinetic energy
densities at the point under consideration and in the free stream. Taking account of (1.28) and (1.16), Eq.
(1.27) can be transformed into a new form containing just derivatives of the specific enthalpy

Nr N
dH 7} . ’ ’
PG + D = F+dv [T + JQT+RaT X 370 4 ]
k=1 J=1+N,
(1.29)
ud < dh
d . . , . -
Dyy= 2 {P 77 o™ — ei) Bl + div (hd*)} = 2 {(Ci* — )P + VlszJ-*}
j=1+N, J=14N,

The function Deff is connected with the effect of "diffusing specific heats" of the chemical elements
The electron element does not enter into the expression for Degs by virtue of (1.20), For identical specific
heats of the elements, or when the mixture consists of one chemical element, Deﬁc = (0, The assumption
about equality (nearness) of the specific heats of elements is much weaker than the assumption about the
equality of the specific heats of all the componentsi

If VH is introduced on the right in (1.29) instead of VT, then by using (1.25) and (1.28) we obtain

T The last component on the right in (1.26) is connected with this same effect.
1 It is possible to select Ng = N — Ny components with the nearest specific heats as the elements.
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p‘%+Deff~ +d1v{ [VH—}- =TV — V(‘j)
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This last mode of writing the energy equation is quite convenient for the solution of hydrodynamic
problems since the function H depends so much more weakly on the heat of reaction, the work of the pres-
sure forces, and the dissipation of the mechanical energy than on the temperature and, hence, changes
more weakly in the stream,

2, The boundary conditions at infinity for the equations formulated above will consist in assigning
Veos Poos Toos @A Cyeo, . . ., CNew. The boundary conditions on the impermeable and indestructible wall with
possible heterogeneous reactions in the coordinate system coupled to the body will be

Un)y = (v:), =0, T=T, 2.1)
' (Jin)w": ry (f=A4,..., Np) (JJ:I)w =0 G=N,41,..., N) (2.2)

where vp and v are, respectively, the components of the velocity vector normal and tangential to the body,
rii=1, ..., Ny is the surface velocity of the formations of the i~th components due to heterogeneous re-
actions, The determination of the function r{ in each specific case is a fundamental problem.

In the absence of heterogeneous reactions (ry =0,i=1, ..., Ny) the conditions (2.2) reduce,when tak-
ing account of (1.17), to

ide=0 (i=1,..,A) 2.3)

Conditions (2.2) or (2.3) substantially impose a relation on the derivatives of the concentration with
respect to the normal, Conditions (2.1) and (2.2) or (2.1) and (2.3) are sufficient to find a unique solution,
After solving the problem the stress on the wall and the total heat flux to the wall can be calculated by the
usual formulas from the expressions

Nr
e =157+ 2 )= [ 3+ E (0Tt 25 58], (2.4)
where

&* =¢p+ 2! (c — ¥} ep3

j=N_+1

Let us consider the case when the material of the body surface enters into a physicochemical inter-
action with the free stream gases, i.e., it can be thermochemically destroyed without the formation of a
liquid film. In this case, under the assumption of quasi-stationarity of the destruction, the boundary condi-
tions will be [6, 11]

Wo=0, Py (cin — eP)+ Tinpy=ri (i=1,...,¥;)
(pv)w (c* — ¢} <1))+J =0 (=N,+1,...N)

(p2Z 4 EQk'Jx)w—(pv)w (2.5)
or
A D a4
H ; P!
[+ 2 (@Vmt 35 O], = oma
where
N
A= {40~ B+ Ao~ 2 O (m o) + RT3 (o — Oy, ]

j=N +1 W

67



Nr N
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Here h‘(,‘i,) - h_«,ﬁ) is the heat needed to heat unit mass of the body material from the initial temperature
to the temperature on the body surface (the temperature of the destruction front is Ty,) taking account of all
possible physicochemical transformations of the body material prior to the formation of the compounds
01(1) ey cN(i) [c(i i=1,...,N) are concentrations of components upon approaching the destruction
front from the bodyl, Ag is the heat of the phase transition; the last two sums in A yield the heat of hetero-

geneous reactions taking account of the diffusion thermoeffect.

Conditions (2.5) are not sufficient to determine a unique solution of the problem. Hence, in thermo-
chemical destruction problems it is necessary to add still another condition which should result from the
concrete destruction mechanism, in addition to the conservation laws, temperature continuity condition, and
adhesion condition, For example, in the case of pure evaporation this can be either the condition of equilib-
rium evaporation, or the condition of evaporation at a finite rate. In the case of destruction of heat shield
materials of complex chemical composition, the missing condition can be taken from experiment in the
form of the kinetic curve connecting the mass rate of destruction (pv)y to the surface temperature [12].

After the problem has been solved in such a formulation, the surface temperature Ty and the mass
rate of entrainment (pv)y are found.

3. If no other assumptions are made about the nature of the chemical reactions and the properties of
the transport coefficients, then any further simplification of the fundamental system of equations (Sec. 1)
and the boundary conditions (Sec. 2) is impossible.

However, if all the chemical reactions in the stream, including the ionization reaction, are equilibri-
um reactions, the fundamental system of equations of motion and the boundary conditions can be simplified
substantially,

Under chemical equilibrium the Ny independent equations of diffusion of the components (1.2) are re-
placed by equilibrium conditions (Goldberg—Waage conditions for chemical reactions and Saha conditions
for ionization reactions), which in conformity with the writing of the reaction (1.15) will be

N
= \, ’ Vi=‘ 2 V‘ij_i (i=1,...,Nr) (3‘1)
J:NF—I-l

where the functions Kp;i(T), called the equilibrium constants, are given., The relationship (3.1) can be
examined as algebraic integrals replacing the N, independent diffusion equations. If a linear system of

equations
N

.
m;. ,
¢+ Z'Vkim—;ck=cj* (=N+1,.. .8 —1)
k=1

N, (3.2)
c(B)+ D vk, E)”l,%)c,,: ¢* (E) =0
k=1
is added to the system (3.1), then compositions can be found, i.e., ¢, ..., eNOTr Xy, . .., XN as a func-
tion of p, T,and c;* (j =Np +1, ..., N). Therefore, an analysis of the equilibrium composition of a mix-
ture at each point of a stream in chemical equilibrium is no different than its analysis for a closed system.
However, for a motion taking account of diffusion, the quantities ¢j* (j=Npy+1,...,N) will vary together

with p and T since the system (1.17), (1.16) does not admit the integralst
c;* =const (j=N,4+1,..., N)

for different coefficients of diffusion of the components (for Ng > 2).

t The integrals ci* = ¢;% = const (j = Np +1, ..., N) will hold for identical diffusion coefficients and in
the absence of a supply of new chemical elements in the stream.
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Hence, the equilibrium chemical composition of a mixture with different diffusion properties of the
components cannot possibly be defined in advance as a function of just p and T even in the absence of the
supply of additional chemical elements in the stream, from the wall, say, The equilibrium composition in
such a stream will be determined by the pressure, temperature, and concentrations of the chemical ele-
ments cj* =Ny +1,...,N) as new independent variables varying in the stream.

In the general case the analysis of the equilibrium composition in the presence of diffusion must be
performed in parallel with the solution of the fundamental system of differential equations. Let us use the
system (1.16), (3.1), and (3.2) to simplify writing the heat influx and energy equations. Let us express the
derivatives of the concentrations of the reaction products in (1.26), (1.30) in terms of the derivatives of
p, T and cg-* =Ny +1,...,N), and the diffusion fluxes of these products in terms of gradients of p, T,

and the diffusion fluxes of the elements Jj* G=Ne+1,...,N},

Let us go over {o mass concentrations ci i =1, ..., N) in the system (3.1), and let us fake the
logarithmic differential of each equation; furthermore, let us replace dcj G=Np+1,...,N) by ch-* G=
Ne+1,...,N)anddegr k=1, ..,, Ny) by using (1.17), we then obtain the following system of joint
algebraic equations to determine deg:

N, , 0 v ’ N v
Byde, = ———_dInT +—~dlnp -+ (—i—vi)dc‘*', of = A (i =1,..., N, (3.3)
k§1 e R 4mT e P izNz,.ﬂ % ’ ""f
~ where
N v, ¥ 3§
Byp=By= D —LH _yy 4 k=1, N, (3.4)
: =N 41 i F

The Van't Hoff isochor equations have hence been used

dlnk, mQ
pi "X P
—ar = ggr (=10

The solution of the linear system (3.3) is written down at once, Let us just present here the sum
needed later
N N, N

r ro
D Qdey = X myQudey’ = — ¢y, dT + B(v,mQ)dp+- X Bj(vi*,mQ) dey* (3.5)
k=1 k=1 ier+1 .
_ J.7at ‘ _ ue@ . M® (3.6)
Cpr"“‘“m'T_g"! B, mQ)=— mp Bn(\‘n*,mo)=— .
‘\?ij* = —Vi-f-‘\?ij/ﬁﬂj G=1+Ny..\l)
Here M(S) denotes the ratio between the determinants in (3.6)
MO = Detﬁ?g (k, 1==0,...,N,
Det || 85 i, f=1,...,N,; s=1,2,3. (3.7)
TR =0, Y@ =B, *+0s=1273)
Y = TR=mQ, @=1....¥) (3.8)

Y =Y =mQ, TR =v, P =vix (=1.....0)

The differentials of the concentrations of the remaining components are found from the expressions

N,
de=de* +ka,-—::’.—de (]‘=N,.+11--'N) (3'9)
k=1 k

Tet us turn to the calculation of the diffusion streams, Let us take the logarithmic gradient of the
equilibrium conditions (3.1) and let us substitute Vxj (i=1, ..., N) from the relationships (1.3) therein,
but first expressing the diffusion streams of the basis components Jj G=Np+1,...,N) in terms of Jj*
G=Np+1,...,N) ande 1, ..., Np.
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Then taking account of the conservation of mass and charge in the reactions (1.15)

N N
e; = — Z Vi€ My = — 2 Vil i=t,... -Nr)
F=N,+1 j=N_+1

we obtain a system of linear equations for the fluxes

I G=1,...,N)

N, N
r m. Q.
DAyl =SS VT 4 X B (3.10)
k=1 j=N,+1
where N N N N, "
i .
Adp=A4g= D 2 ok (Vi — Vez) + D) Z VijVig —2
f=NA=N41 i j=N 411=1
o 1 3 y v,z )V 2, a:)
+ 2 (ViiAy + ViiBi) — Aix = 5 2 X AE i “;_I Tt
i=N 1 =N, +11=N +1 il
N
2 Z ViV 7 M- D1 (vl + viAy) — Dy (6 B =1, L N i)
j=N,+1 1=1 j=N,+1 (3.11)
N - N N
z A v,z — V)
A= EE 4 — B D Ay —”“—1]
k=1 i J=Nr+1 I=N 41 i1
N N, N N
+ 2 A i ” +2 Z iy —Byi=— X D Ay
=N 41 1=1 J=N 41 2 = =N,+1 =N +1
N Nr o NT
v, & ) 2 A5 (& +vy=) b
X(" lzzll‘] + Z 2 v, + Z A”T_i_ 2 -——I-L_ (i=1,...,N)) (3.12)
1 j=N,H11=1, ls#i % =N +1 t k=1, ki *
I o v, A y
Ey=Ay+ ‘L:—'k— - 2 valj
k=1 7 l=14+N,
(i=1,...,N; [=N_+1,...,N) (3.13)

It is interesting to note that, as follows from the system (3.10), the expressions for the diffusion
fluxes of the reaction products J; i =1, ..., Ny) do not contain the pressure gradient explicitly for a flow
in chemical equilibrium taking account of barodiffusion, If the barodiffusion effect is neglected, then a mem-~
ber proportional to Vp will appear on the right in (3.10).

Again we shall not write down the Solution of the system (3.10), but we present the expression for the
sum at once

N N
2 Q'Y= kaQkJ,, = —}, VTJ- 2 A (B;, mQ’) 3% (3.14)
k=1 k=1

A K% A (E,, mQ @

r=_—_§F§_7 n( me)=_‘K (3.15)

Here K(5) denotes the ratio between the determinants in the relationships (3.15) as well as later [re-
lationships (3.23)]

KO — Detﬂnsﬂ E1=0,...,N,
= Det"A T (i,'j:i,...,zv.s'=1,__,4 )
"" " ' (3.16)
af) =0, af) = 4y, (kl~+—0 s=1,...,%
a =aff =aff =mQy, nff = £, (l—1 N)

Taking account of (3.5), (3.14), and (1.16), the heat influx equation (1.26) can be represented for flows
in chemical equilibrium in the following final form:
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peg! S — (4 -+ pB (v, mQ)) 22+ iv {h VT + S 14,(8,m0)

t=N,+1
(3.17)
+ RATZT) I } 2 [VAJ* + B; (v*, mQ) div Ji*] 4-
o =NA4a
c;ﬁ == Cp -t Cpry Aesr=A 4 A, ‘ (3.18)

Here o7 is the effective specific heat, Ay, is the effective heat conduction coefficient. The energy
equation (1.29), taking account of (3,14) will become

p%?—wtl)m— +dw{eﬁVT+ 2 A(E;mQ’)+ R4TETI I*" 4 } (3.19)
)=N+1

or by introducing VH in the right side in place of VT in conformity with the equation

N
VH = c,VT — ZQch,; V() + 3 et Vb

E=1 . j=N4+1

=¢3'VT — B(v,mQ) Vp — 2 By (v*, mQ) Vei* -+ V (- )+ 2 (Cioo — ) VA (3.20)
=N, +1 =Ny

we finally obtain

R B C i ae SICo LR

N N
* g
+ 2 (e —cio) V- D) [4;(Ej,mQ") + RaTE] L” I*
j=N,+1 =N+l
N v . !“Ceﬁ
+ 3 B mQ) Ve, o=y (3.21)
j=N,+1 eff

where vgsr is the effective Prandil number constructed in the ordinary mamner from the effective specific
heat and the effective heat conduction coefficient. The relation between VcJ* and J ]* G=Ne+tl,..., N) needed
to close the system of equations is obtained from the relationships (1.18) if the diffusion fluxes Jj(i=1,...,
Nr) determined from the system (3.10) are eliminated therein

N N

Ve* = — JFm™? XZ Ay + A;(d;, mQ) VT - L NZ.;. [bi -+ Ay (@ ENIIF — KffVIn T — K9V In p. 3.22)
=1 =N, 1 .
Ay s Ep) = — K@, A Ndy, mQ') = — K@ [RyT? (m=N_41,...,)

aff =af) =dpy, A} =Ep, o) =mQ’ ¢=t,..8) (3.23)

Therefore, in the case of a flow in chemical equilibrium of a multicomponent gas mixture with differ-
ent diffusion properties of the components in the presence of ionization, we arrive at a fundamental system
of N + 2Ng + 6 equations (1.1), (1.7), (1.11), (1.16), (3.1), (3.22), (3.2), and (3.21) or (3.17) for N concentra-
tions, N diffusion fluxes of the elements, Ne concentrations of the elements, the density, three components
of the veloeity, pressure, the function H, or the temperature., The diffusion fluxes of the components are
eliminated from the direct solution of the problem. They can be calculated from the system (1.17) or (3.40)
after the problem has been solved.

After the problem has been solved, the mass sources can also be found from the diffusion equations
of the components because of the equilibrium reactions viri i=1,...,Nyp.

The system of boundary layer equations can be obtained by the usual method from the closed system
of Navier-Stokes equations presented above for hlgh Reynolds number. Let us present just the energy
equation for the plane case from this system:

dH ap 3 fp (uz ok,
— + D + — (s, -+
P elf = By 5, ,,[6y Cett = ) = ZN 1 ’°°) yJ

71



N
, o
+ 3 48 Q)+ BRI+ A S By, m@;—f}
j=N,+1 Oett j=N, 41 Y
N N
Day= 3 ftep—cdhl+p oy} = 3 [“*—c,e)P + % 73] (3.24)
=N +1 j=NoH v

where y is the coordinate axis directed along the normal to the body surface, Jiu*'

s djy*' = (J‘j* - ¥}. The sub-
script e denotes quantities on the outer boundary of the boundary layer. All the vectors in relationships
(3.22) should be replaced by their projections on the y axis and the term with barodiffusion should be dis-
carded if ngj(c) ~1.

4, The boundary conditions for chemical equilibrium flows with equilibrium conditions on the im-
permeable wall remain in the form (2.1) and (2.2) with the exception of the conditions

Gido=re (=400
which should be replaced by the equilibrium conditions (3.1).

After the problem has been solved with such boundary conditions, the friction stress is found by the
ordinary formula, and the heat flux to the wall will be determined from the expression

(Jﬁn)w= (}’zﬂ _g%l)w = { c:gf/ff [ on ‘J{" B(‘V mQ) 3p + z B (Vi *
p

*e 4.1
=N+ ]}w 12 = CP* + pr .1)
Pl
From the relationship {3.22) we obtain on the wall
de; o K¥D e
=4 @ me) 5 |5 g (4.2)
T
Then the expression (4.1) can be given the following form
l’eﬂ‘ aH 1 Ll * a8
T )y = A= - (B (v, S B; {v;, )y 9P 4.3
(~Iwe={ L @m0 =5 | 3 56 o)), .3
j=N_+1
where
- g2
() esr = ¢ — §+1 B; (v*, mQ) {A;' @, mQ)— L J {4.4)
=N,

It is important to note that for different diffusion coefficients of the components, the concentration
gradients of the elements along the normal to the surface are not zero thereon and are proportional to the
temperature gradient [see (4.2)] despite the fact that the diffusion fluxes of the elements on the wall equal
zero [see (2.2)]. For identical diffusion coefficients, all the quantities are (see Sec. 5)

Aj(dj, mQ) =0 (j == N,. —f—- 1, sy N)
In the boundary layer approximation we will have

Mgt 0H
— o= (=5 ) (4.5)
( q)w (cp )eff an w
In the case of a thermochemically destructible wall in the presence of chemical equilibrium, the con-
servation equations of the reaction products on the wall should be replaced by the relationships (3.1). The
energy balance equation becomes

T
()"e}‘i n )w = (p”)wA {4.6)
or, taking account of (3.20}, (3.22),

st :' [BH ap o [ TR,
= 5 B, mQ) 5~ ~ Jiy {2 B; (v, m
[ (cp Yeif Aw an [l 5=§r+1 Jy{ m J( Q)
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N
S\ B (% mQ) by + Ay (s ENI} | = (eo)

=N 41

or

[ ?»:ff ] [%% + B (v, mQ)Z—:]w = () A — [ {':ff

(ep degs Jw p )sz]wJ—’N +1

c‘.‘ —_ ..(1) m.
X Lc]'_—__{_m]—BJ (V,:mQ) 2 Bl (V mQ) [bll + Al] (dh EJ”}

LM,
I=Nt1

j 4.7)

In the boundary layer approximation, the term with the derivative with respect to the pressure should

be omitted in (4.7).
5. Let us consider as an example a ternary mixture consisting of atoms (A), ions (I), and electrons

(E) in which one equilibrium ionization reaction occurs
I=A—E
For this case, we find from the appropriate formulas of the preceding sections [x = x(I)]

*E) =0, c*d)=1, J*E)=J*QA) =0
z(A) =1 — 2z, 2(B) =2(I) =2, ¢(A) = (1 — 22)(1 — z)™1
e(I) = e, e(E) = —e, ¢(A) = 0, m = m(A)(1 — z)

1 I)—m(E 1 /1 E)}— m (I)\
P (E)=__t-z‘7-(_x. _|_m’_(2_._r_nln(_).), ¥k (1)=§e—_(?+m_(_)7;.w\
E)—m (1 1 z(1—2
e (A) = %em_()’ Kg:) (A)_.___z_z(i_x):)

m(l)z (1 —2z) (c)(E)_m(E)z(i——h)

Q) =3, myd =2 =@ (A —2p

B9 (4) = K,© (B) =0, K (A) = qu (=T (1) + 27 (B)

K (0 = — 5 Dy (67 () + 27 () + o ‘A; K (4)
KE () = — o s (37 (0 -+ 37 (4) + S £ )

K€ (4) = Kp@ (B) =0, AL (A, &)= A(A, A) ="~ @ ‘,I 213 ii)(E' )
AE, E)=A(E, E)y{A(I, E)-]-(L_W
AG I, =A(, I)+A(E, 1)+(1_2i”():A——_%”—I—)—

A(A, I . AAE A(I, A) LA(E, A
A0 4, D=2k A0 4, B = 2(‘1_,; 40, A)=~‘-—7)(—1+_—,f)—’

o AAE ¢ A, ])
A()(I'E)_Zc(_z—_i)-’ A()(E I)—m—ﬁ

AC(E, A)_w_zé_(iig)ﬂ.ﬁ @A, 1) =A(C) (A, I) —A@ (A, A) 4+ A@ (A, E)
A", T =AO (1, )— AL, A+ AQ(, E), ATOE, I) =
=AY (B, I) - A9 (B, A) + AO(E, E), d(A; I) =d(E, ) =0
b(A, A) = (1—22)A (A, A)+;_(_Ax(1 A) 4+ A(E, A) L B(E, A)— b (A, )=
[r(A(E Ey4+A(I, E)+(1—22) A (A, E)]
2(1—ap @ (1 —2z) [m (1) QI
B, I)~z(1 22)" or =@ —2pm(A) R, T8
z(2z—1)ym () Q
Q=M B, mQ =" _ym(A)

b(E, E) =

I % — ) m (I
B (A, v (8), m0) = Ty BB v (B, mQ = S =
(1 —2)2(A (A, E) A (I, A))
A, I) = z (x((i_zz) (1, . Ay =0(j, Il=A, E)
z—1)A(E, A
E(, A)_1 2x[A(A D+ A(A, E), EQ, E)= ——)z—(—)
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g zm (I} @’ i , Cr—DAE, A ¢
A(A, E(A), mQ’)=T:§"» A(E, E(E), mQ):(i—z)[A(A, By - A(L,A)

=g (D), A(A, d(A), mQ)=A(E, d(E), mQ)=0

) o T2 [mDQP
r =T 2P R,2[AA, E)+ A (L, A)]

As is seen, the diffusion properties in such a mixture can be described by one effective ambipolar
diffusion coefficient (see [7] also)

2 2D (A, EYD(A, 1)

FrAA EY AR )T DA DFDA, B ~2D(A 1)

D@ (A) = p@ M= D@ (E) = D

The Prandtl number oy constructed by means of Cpr and A will be

o =P Q2s@ g0 g B p@_ %
Tk 73 ) pD@ Ss@

r

Therefore, the Lewis —Semenov number L@) is close to one for a maximum development of the
ionization reaction,

The considered case is unique when the diffusion properties of all the components are described by
one diffusion coefficient [7]. For ionized mixtures consisting of four and more components (if Ng > 2), the
concentrations of the elements will not be constants in the streams, but will be the desired functions.

Remarks

1. It is known that for mixtures of ionized gases it is sometimes necessary to use higher approxima-
tions in calculating the transport coefficients by the Chapman— Enskog theory [13].7

Multicomponent diffusion coefficients in a second approximation can differ from their values in a
first approximation by up to 20%, and this second approximation is completely satisfactory to describe dif-
fusion for an arbitrary degree of ionization [13]. The thermodiffusion coefficients must be calculated in a
fourth approximation. For approximations higher than the first the drag coefficients ay; can already not be
replaced by Dj ~1(1) but should be calculated by those known, but in a complex manner in terms of the
multicomponent diffusion coefficients Dyj; [8]. In this case the coefficients will already not possess the
property ajj = aji d,j=1, ..., N although the structural form of (1.3), (1.5) remain unchanged.t In this
case the discussion presented above can be repeated, but it is hence impossible to use the symmetry condi-
tion for the coefficients ajj. The final results become more complex. However, because of some uncertain-
ty in the collision cross sections (for example, the ion—atomic interaction), and the comparatively good ac-
curacy of the first approximation, for simplicity it is possible to put ajj = Dij"3(1) in certain cases Tt It
is certainly interesting to estimate the influence of this assumption on the boundary layer characteristics.
Such an estimate will be connected with a great deal of computational effort even for the simplest problems
of boundary layer theory. Taking account of higher approximations for the heat conduction coefficient does
not alter the structural formula for the total heat flux Jg, but changes the coefficient in the term connected
with the diffusion thermoeffect. However, since this effect is small even for ionized mixtures [13], taking
account of the higher approximations is reflected only directly in the heat conduction coefficient itself,
which must sometimes be calculated up to the fourth approximation inclusive for ionized mixtures,

The second approximation for the viscosity coefficient is completely satisfactory to describe the
viscosity for mixtures of ionized gases [13].

2. Formulation of the problem of a chemical equilibrium flow of multicomponent ionized air taking
account of different coefficients of diffusion of the components has been considered within the limits of the
boundary layer equations in recently published papers [14, 15]. A term proportional to the intensity of the
electrical field originating because of separation of the charged components (electrons and ions) has hence

T That is, to take account of a larger number of terms in the series expansions in Sonin polynomials for the
perturbed part of the distribution function,

¥ The proof of the invariance of the structure of (1.3) and (1.5) can be obtained by using methods of irrevers-
ible thermodynamics also if the influence of viscous momentum transfer, small for sufficiently high Rey-
nolds number, is neglected.

t 1 The first approximation for Djj is completely satisfactory for mixtures of neutral components.
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been omitted in the initial Stefan—Maxwell relations (transport equations). Hence, the transport equations
in these papers do not agree with (1.3) herein. Not faking account of this field results in the free (not
ambipolar) diffusion of electrons to the cold wall and to the accumulation of significant space charges in
the stream, i.e., to spoilage of the quasi-neutrality condition,

In calculating the heat and diffusion fluxes the authors do not remark that an equilibrium composition
in the boundary layer will depend not only on p and T but also on the conceniration of the chemical elements
as new independent variables varying in the stream. Hence, the formulas for cg f and Ae f used in [14, 15]
are different.

The energy equation used by the authors of [14, 15] in the cases they examined does not agree with
{3.24) since the phenomenon of diffusion of the chemical elements was not taken into account in [14, 15].
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